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We discuss the origins and the effects of mobility fluctuations of rigid, globular 
macromolecules on a solution's electrophoretic light scattering spectrum. 
Assuming a dilute solution, a modified van Hove self-correlation function is 
calculated via van Kampen's time-ordered cumulant method and the results are 
compared with less rigorous approaches. The consequences of generalizing to 
dynamic external fields are briefly considered. 
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1. I N T R O D U C T I O N  

Ever since electrophoretic light scattering (ELS) was first applied to the 
study of fiaacromolecular solutions, speculation has focused on how this 
novel experimental technique might  be employed to extract rate constants  
for unimolecular  reactions involving macromolecules.  (1"2) On  the 
theoretical side, the picture is rather simple if the macromolecula r  shape is 
spherical, the concentra t ion is low, and the various reactions are "spec- 
troscopically unimolecular." One writes a set of reaction-diffusion 
equat ions with an electric field-induced drift which describes the space-time 
evolution of  the probabil i ty density of  each observable species, with the 
condi t ion that  each density is initially a Dirac delta function: 

N 

O G i - D ~ V 2 G i + I ~ ( E . V )  Gi+ ~ ( K i j G j - K j ,  G~) (1.1) 
~t j ~  

G~(r, 0) = 6(r), K 0 >1 0 
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where D is the diffusion coefficient, # is the mobility, and E is the external 
electric field. The Gi are the van Hove self-correlation functions, (3) that is, 
Gi(r, t) is the equilibrium ensemble-averaged conditional probability 
density that a macromolecule of species i located initially at the origin will 
be at position r at time t. Note that Eq. (1.1) has the structure of a master 
equation with diffusion and drift. Since the system is effectively isotropic 
and unbounded, the spatial Fourier transform of Gi can be identified with 
the so-called intermediate correlation function, directly obtainable, in 
principle, from the heterodyne-measured ELS spectrum, which is itself a 
concentration- and amplitude-weighted sum of the spatial-temporal 
Fourier transforms of all the Gi (the Wiener-Khintchine theorem). 
Although this analysis looks impressive and simple on paper, it has so far 
proven to be impossible to obtain convincing experimenal evidence of even 
a single reaction-kinetics related spectral feature. Conventional pulse field 
ELS is apparently not sufficiently sensitive to measure line shapes to the 
required accuracy. (4) The achievement of better resolution through the use 
of time-varying fields is currently being vigorously pursued by some in the 
ELS community(5); fortunately, it is not difficult to incorporate this effect 
into our analysis, and some of the theoretical consequences are considered 
in this paper. 

While it is natural to assume that Eq. (1.1) describes the most general 
case of conformational dynamics, it is quite conceivable that N is large, or 
even that the transition dynamics is not a Markov process, so that the 
notion of a set of rate constants is not valid. A previous analysis (6) 
demonstrated the possibility of a variety of rather distinct "conformational 
dynamics spectral signatures," which depended strongly on the nature of 
the underlying stochastic processes, and in this paper we continue our 
investigation of this model, as follows. Consider a single spherical macroion 
in solution together with counterions and supporting electrolyte. Suppose 
that conformational fluctuations have a negligible effect on the 
hydrodynamic size or shape, but that the molecule's electrophoretic 
velocity is coupled to its internal dynamics in such a way that the mobility 
# fluctuates in time. This might be the case if the surface charge were fluc- 
tuating in a low salt environment or if the so-called zeta potential were 
fluctuating at high salt concentration (the Smoluchowski or large-~ limit, 
where ~c 1 is the Debye screening length). (74) In other words, we suppose 
that the ambient electrolyte, which consists of small ions, is able to 
faithfully track a class of sufficiently slow, electrostatically active confor- 
mational fluctuations in the nearby macromoleeule, so that we can take the 
counterions plus suporting salt to be at or near equilibrium for a given 
macromolecular configuration. As a result of these idealizations, we can 
replace the N-species system of Eq. (1.1) by a single species with a fixed 
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diffusion coefficient and a fluctuating, time-dependent mobility. The 
unimolecular reaction terms may then be recovered as a special case--a 
Markov process with discrete states. 

The point is that by mapping the problem onto a stochastic differen- 
tial equation with colored, multiplicative noise, we can avail ourselves of 
the rigorous time-ordered cumulant expansion procedure of van 
Kampen, {1~ as well as explore more ambitious, less systematic (in fact, 
rather ad hoc) techniques, such as the first-order smoothing or first 
cumulant discard method of Bourret. (12) The problem, therefore, consists of 
a nontrivial exercise in statistical physics with a close connection to 
biophysics--the conformational dynamics of solvated globular proteins as 
observed by ELS. 

This paper is organized as follows. In Section 2 we present a projection 
operator derivation of an exact equation of evolution for the correlation 
function and introduce the first-order smoothing (B) ansatz. In Section 3 
we introduce van Kampen's systematic cumulant expansion and compare 
to B-smoothing, as well as discuss the exactly solvable Gaussian model. We 
consider the consequences of assuming a two-state Markov process for 
mobility fluctuations in Section 4, and in Section 5 we briefly investigate 
the case of time-dependent external fields. 

2. THE MODIFIED VAN HOVE SELF-CORRELATION 
FUNCTION 

Let ~p(r, t [p(0), #(t)) be the probability density that a macromolecule 
initially at r = 0 with mobility p(0) will be located at r(t) with mobility #(t) 
a time t later. The quantity ~ is therefore a function of the stochastic 
variable p as well as the nonrandom variables r and t. Suppose that 
satisfies the stochastic Smoluchowski equation 

with 

O$/at = DV2$ +/z(t)(E �9 V) 

~(r, O) = 6(r) (2.1) 

where E is constant and the equilibrium ensemble average of the fluc- 
tuations in ~b and/~ vanish. In other words, we have that 

~k= <~b(r, t)> + 6if(r, t) 

/~(t) = / t  o + 6kt(t), /~o const (2.2) 

<~> =o, <~> =o 

822/52/5-6-8 
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We write Eq. (2.1) in a more compact form, 

where 

(2.3) 

with 

C~of= fo dr exp[L~~ - r ) ]  f (z )  

9 =  _ ~ o  ~ {~o(1-~) ~1}" 
n = l  

Equations (2.7) and (2.8) constitute a Dyson expansion, I13) which usually 
appears in the literature as a diagrammatic representation. An exact 
solution to a Dyson equation is generally not possible, and, with the excep- 
tion of van Kampen's method, the validity of approximation schemes 
depends strongly on the specific problem. 

For reasons which will become apparent later, we introduce the B 
ansatz, which amounts to the closure assumption 

6tp = f#o 2'x (~p) (2.9) 

(2.8) 

~o = D V  2 + # o ( E -  V) ,  ~e, = 6 # ( t ) ( E  �9 V )  

so that ~o is nonrandom, ~1 is a "centered" random operator ( ( ~ ) =  0), 
and we solve for the modified self-correlation function (~p(r, t)).  First, 
switch to the integral form of Eq. (2.3), 

~(r, t) = exp(5~ 0(r, 0) + dr e x p [ ~ o ( t -  r ) ]  ~ l ( r )  0(r)  (2.4) 

and introduce the projection operator ~' as 

~ G  = ~eo~, ~ , = 0  
(2.5) 

~0 ( r ,  0) = tp(r, 0), ~ : -  (~b) 

so that the projector ~ is an ensemble averaging operator and the initial 
distribution is nonrandom. Note that the fluctuating part of the dis- 
tribution is simply the orthogonal projection 

6~(r, t )=  (1 - ~ )  ~0(r, t) (2.6) 

A few straightforward iterative manipulations produce 

(tp(r, t ) )  = exp(L#ot) O(r, 0 ) - f f o ~  (~9(r, t ) )  (2.7) 
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and so 

( 0 )  = exp(5~o t) ~(r, 0) + fro ~ s % 5f~ ( ~ )  (2.10) 

Equation (2.9) says that the fluctuating portion of the distribution 6~,(t) 
depends only on %(z), on the stochastic operator LP~(r), and on the 
correlation function (~0(r)) at previous times ( r <  t). By substituting for 
&a o and ~ from Eq. (2.3) and f#0 from Eq. (2.8), one can cast Eq. (2.10) 
into the more provocative form 

a ( 0  ) = DV2( 0 ) + ~,o(E. V)(~, ) 
8t 

+E2fdar'f ds <6lX(t) b l~(s ) ) -~xG(r lr ' , t - s ) - -<O(r ' , s ) )  

(2.11) 

where the electric field is in the x direction and G is simply the Green's 
function for diffusion with uniform drift: 

G(rlr', t - s ) =  [4rcD(t-s)] -3/2 

I [ x - x ' + # o E ( t - s ) ] 2 + ( y - y ' ) 2 + ( z - z ' ) 2 ]  
x exp 4D(t - s) 

(2.12) 

Since the stochastic variable 3# depends only on time and not on spatial 
coordinates, it is easy to show that the smoothed correlation function ( ~ )  
is given exactly by 

(0(r,  t ) )  = C(t) G(r 10, t - 0 )  (2.13) 

where the fluctuation-dependent factor C(t) is determined by the solution 
of 

de(t) 2 2 f '  
dt E Kx ds C(s)(6kt(t) 61z(s)) (2.14) 

- - o 0  

where K is the wave vector associated with the spatial Fourier transform. 
Now use the time-displacement invariance of an equilibrium correlation 
function to arrive at 

dC( t ) 2 2 fo dt = - E  K x ds C(s)(6#(0) 6 # ( t - s ) )  (2.15) 
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where we have assumed that C(t) = 0 for t < 0. The convolution theorem of 
Laplace transforms (variable z) immediately yields 

1 
C(z) = 

z + E2KZF(z) 

F(z) = f ?  d~ e-=<6#(0)  6#(r))  

(2.16) 

and it is now a straightforward matter to investigate the dependence of 
C(t) on the auxiliary stochastic process 6#(t), as well as the influence of 6# 
on the ELS heterodyne spectrum via the Wiener-Khintchine theorem. 

3. T H E  V A N  K A M P E N  E X P A N S I O N  A N D  B - S M O O T H I N G  

Unfortunately, despite the simplicity of the previous analysis, it is 
quite difficult to assess the general validity of the B ansatz. If we are to 
have full confidence in our results, a more systematic approach to the 
problem is needed and we therefore turn to van Kampen's time-ordered 
cumulant expansion. ~176 First, consider the spatial Fourier transform 
(wave vector K) of Eq. (2.1): 

O(J/~t = [ - K 2 D  + iK~#(t) E] (3.1) 

This is the simplest example of a more general stochastic equation analyzed 
by van Kampen: 

au/at = [Ao + ~Al(t) ]  u(t) (3.2) 

where u is a random vector, A o is a nonrandom matrix, Al(t) is a random 
matrix, and c~ is a scalar expansion parameter. Van Kampen has shown 
that the statistical or ensemble average of u with nonrandom initial value 
U(to) satisfies 

d ( u ) / d t  = Ao(u)  + K(tt to)(U) 

where 

K(t l to)= ~ ~rnKm(l[to) 
m = l  

and 

,l i, Km(tlto) = dt2. . ,  dtm_lCm(t, t~, . . . , tm l) (3.3) 
o 0 
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In Eq. (33), C m is an mth-order time-ordered cumulant 

Cm = (A , ( t )  A t ( t , ) . . - a l ( t  m _ 1)>P (3.4) 

where the subscript P signifies cumulant. For example, C2(t, tl) is given by 

C2(t, t l )=  (A~(t)Al(t~))p = (A~(t)A~(t~)) - <Al(t) ><Al(tl) > (3.5) 

If we denote the correlation time of A~(t) by re, then to first order in ~r~., 
and for times exceeding the initial transient time 

d<Udt > - {Ao + ~<a~ (t) > 

+~2 dr (Al(t)[exp(zAo) ] A~(t -z)> exp(-rAo) ( u )  (3.6) 

In our case 6140 is statistically uncorrelated with r and so we have, for 
all times, provided that [KxMoE'r~,l ~ 1, 

~(r = [ - K 2 D + i K x / ~ ~  2 
-1 

dr <@(0) @(z)>| <~(t)> 

(3.7) 

where Mo = (@(0)2> 1/2 is the amplitude of the equilibrium mobility fluc- 
tuations. Note that JKxMoEru[ ~ 1 can always be experimentally realized, 
regardless of the magnitude of ~,, which is the correlation time for the 
decay of p fluctuations. Equation (3.7) implies that the diffusion tensor has 
been renormalized from isotropic to the anisotropic form 

( ~ 0 0)00 
where 

6D~x=E 2 dr <6#(0) 6ft(r) > (3.8) 

The diffusion coefficient is anisotropically enhanced because the mobility 
fluctuations interact with the external field to give the macroion rapidly 
varying random kicks in the E direction. The casual observer might 
conclude that the macromolecule has been distorted by the field, whereas 
Eq. (3.8) attributes this effect to conformational dynamics. (6) 
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It so happens that the B-smoothed formulation, as given by 
Eqs. (2.11)-(2.16), reproduces van Kampen's result (3.8) under virtually 
identical conditions; i.e., lav~,] ~ 1. To see this, consider Eq. (2.16) and 
choose 

F(t) = (6#(0) 6~t(t)) = 73(t), 7 const (3.9) 

which means that the mobility fluctuation spectrum is white noise. Inter- 
pret F(z) as a Laplace-Stieltjes transform and immediately obtain 

which implies 

C(t) = exp( - K~E2~t) (3.10) 

A more interesting picture arises from collapsing the Green's function in 
Eq. (2.12) as 

where 

G ~ 6 ( r - r ' )  (3.12) 

which implies that the macromolecule is virtually stationary during the 
decay of a # fluctuation (Brownian limit). Equation (2.11) then says that 

6Dxx=E 2 dr (6/~(0)fig(r)) (3.13) 

in complete agreement with van Kampen's result. 
Now consider the B-smoothed correlation function where ~% 

arbitrary and F(t) has the Markov form 
is 

F(t)=-aexp(-bt), a, b > 0  (3.14) 

From Eq. (2.16) the Laplace transform of C(t) is then 

z + b R1} _ - b  _ (b 2 - 4~) 1/2 

c(z) = ( z -  R1)(z- R2)' R2 2 

~--K~E2a (3.15) 

The correlation function C(t) is therefore given by 

C(t)= ( R 1 - R 2 )  ~ [(RI + b ) e x p ( R l t ) -  ( R 2 + b ) e x p ( R 2 t ) ]  (3.16) 

6Dxx = E27 (3.11 ) 
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Since the R's are in general complex, C(t) decays as the sum of two 
oscillatory exponentials. An interesting exercise is to go back to the original 
equation (1.1), take N = 2, fix D, and take 

I'Ll -'+ ]~0 -~- Z~ ,  ~2 "-'+ ~ 0 - -  Z~] J '  K12 = K21 (3.17) 

These limits constitute a dichotomic Markov processes (DMP). After a 
spatial Fourier transform and a bit of algebra, it is easy to show that 
Eq. (3.16) and the DMP C(t) are identical, given the proper identification 
of a and b with the parameters in Eq.(3.17). This connection will be 
discussed in more detail in the next section. It turns out that the B ansatz is 
generally exact only for a DMP, which, moreover, can be analyzed via 
straightforward algebra. 

To illustrate the connection between C(t), ~(K, t), and the heterodyne 
measured intensity of scattered light I(o~), we go back to Eq. (3.16) 
and take the limiting case of infinite correlation time ( b ~ 0 )  for the 
# fluctuations. We now have 

C(t) = cos(al/2t) (3.18) 

which, via Eq. (2.13) and a Fourier transform, determines ( ~ ) .  The 
Wiener-Khintchine theorem says that (2) 

1 ~+~ 
I(~o) =~-~ j ~ (~(K, t ) )  exp(i~ot) dt (3.19) 

and therefore 

DK 2 
Io~> o(O~) = const x [~o -- KxE(l~o - x/-a)] 2 + (DK2) 2 

DK2 } 
+ [~ -KxE(#o + x/-a)] 2 + (DK=) 2 (3.20) 

with another pair of Lorentzians located at the reflection through cn = 0. 
Equation (3.20) is exactly what one would expect for two noninterchanging 
species with identical D's and mobilities #o-+ x/-~. 

Suppose the # fluctuations arise from a stationary Gaussian random 
process. Then Eqs. (2.1) and (2.2) can be solved exactly as 

<~(K, t) > = C(t) exp[( + iKxktoE- KZD) t] (3.21) 

with 

C(t)=f expI +iKxE f~ d~ 6kt(~)]) 
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Since 6# is a Gaussian random process, so is ~ dr 6#; therefore, C(~) can be 
written 

C(z) = exp [ _  1 2 2 ~ d t f f  F ( t -  -~ K x E  f~ ds s)]  (3.22) 

where we have assumed, as before, time displacement invariance for the 
mobility fluctuations. By choosing 

F(t  - s) = 76(t - s) (3.23) 

we recover the white-noise result (3.11). By setting 

F(t  - s) = a e x p ( -  b It - sl) (3.24) 

we generate a Uhlenbeck-Ornstein process, (14/which is essentially the only 
possible stationary Markovian Gaussian random process, in which case 

C(t) = exp { - (~/b 2) [bt + exp( - bt) - 1 ] } (3.25) 

where c~ is given by Eq. (3.15). Here a short correlation time (b--, oo) 
produces 

C(t) = e x p [ -  (c~/b) t], b ~ oo (3.26) 

and we recover a renormalized diffusion tensor as in Eq. (3.11) or (3.13). 
On the other hand, a very long correlation time (b ~ 0) produces a result 
identical to that derived from a static Gaussian distribution of 6/~'s: 

C(t) = exp( - �89 b --, 0 (3.27) 

and the spectrum becomes 

L i; jer'cL(z )v J 

j erfc L JJ (3.28) 

where 

,L = - i K x E # o  + K2D 

For a very large molecule D--*0, 2 becomes purely imaginary, 
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Re[erfc] ~ l, and the scattered intensity simplifies to the sum of two 
Gaussians (not Lorentzians): 

1o~>o(~) ~ ( ; ) ~ / 2  {exp I--(~-KxEIXo)27~ . j + e x p  Li- 

(3.29) 

Note that the B smoothing with the same F(t)  gives results quite different 
from the exact equations (3.25)-(3.28). 

4. THE MOBIL ITY  CORRELATION FUNCTION 

Up to this point we have tacitly assumed knowledge of the mobility 
fluctuation correlation function 

r(t) = (6u(o )  6~,(t) > (4.1) 

without questioning its origins. Here we present what is probably the 
simplest model that gives a F(t)  decaying as the superposition of simple 
exponentials: an N-state Markov process. Suppose that Ps(t) i s  the 
probability that the macromolecule occupies the j th  mobility state at time t 
conditioned on the initial state distribution. With the Markov assumption 
we can immediately write a master equation (15) 

dP/d t  = - A P ( t )  (4.2) 

where A is the matrix of transition probabilities 2is, i.e., 2~jAt is the 
probability of making a jump from state i to j during the time interval 
(t, t + At). At equilibrium (steady state) we must have 

AP eq = 0 (4.3) 

The matrix A is singular because Z j  Ps = 1, and so we eliminate Pl( t )  and 
rewrite 

where 
dP' /d t  = -A'P ' ( t )  (4.4) 

P'(t)  = [P2(t) - P~o,..., PN(t)  -- PeNq] 

A'ij= A i j -  Ail , i, j =  2, 3,..., N 

Equation (4.4) is solved as 

(4.5) 

P'(t) = exp( - A't) P'(0) (4.6) 
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where the P'j(t) depend on the initial set of P;(0). Write the statistical 
average of the mobility as 

N N 
( # ( t ) ) =  ~ 12jPj(t)= ~ (t2j-#,)Pj(t)+12 l 

j = l  j = 2  (4.7) 
N 

( # ( t ) - - / [ 2  eq ) = ~ ,  ( l ~ j - # l ) [ e j ( t ) - P j q  ] - ((~]2(t)) 
j = 2  

Equation (4.7) can be written as a scalar product: 

with 

(/~(t) - #cq ) = It,. P'(t) 

1"/; ~" ~/j - -  /"/1 (4.8) 

Now F(t) can be expressed as 

F(t) = ( (fig(t))0 6/~(0) ) (4.9) 

where ( . ) o  denotes an average conditioned on the initial value, and this 
immediately gives 

F(t) = it ' .  e x p ( - A ' t ) ,  a' .  It' (4.10) 

where ~r' is the ( N - 1 ) x  ( N - 1 )  matrix ( P ' ( 0 ) ' P ' ( 0 )  r )  (T denotes the 
transpose). Hill has shown that (~6~ 

0 " ~ =  __peqp~q, i ~ j 
(4.11) 

= P7q(1- P~q), i = j  

and so for a two-state system we have 

A=( )~ -&'~ - - '~12 ~ 2 1 J '  A '  = }~21 -{- )~12 

and 

Therefore 

P~q = ,~21/(~,12 -[-/],21 ) ( 4 . 1 2 )  

21222l e x p [ _  ()q2 + 221) t ] 
F(t) = (#2 - #1) 2 (/~21 -'}- /~12) 2 (4.13) 
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Comparing this with Eq. (3.14), we can identify 

a = (/~2_ #1)2 )~12 ~21 b=212+221 (4.14) 
(221 ~- 212) 2, 

Note that the amplitude a depends on the transition probabilities as well as 
the difference between levels. For the dichotomic Markov case we have 

(4.15) 
a = <~#(0)2 >, b = 22 

so now the amplitude is just the mean-square equilibrium mobility 
fluctuation and the correlation time is the inverse of twice the transition 
rate. 

More generally, F(t) for an N-state Markov process will decay as the 
sum of N -  1 exponentials unless some of the 2~j are identical, in which case 
fewer exponentials will appear. 

Even for N =  3 the algebra becomes quite tedious, and so we restrict 
ourselves to a three-state system with identical transition probabilities 2, 
and simply present the result for F(t): 

F(t) = 2 2 ~2 ~(/L 1 "~ 2 + /132 - -  ~1/~2 - -  # l / t 3  - - / t 2 # 3 )  e x p (  - -  3}~t) (4.16) 

which is quite similar to the two-level mobility correlation function. 

V. THE V A N  HOVE C O R R E L A T I O N  F U N C T I O N  IN A PERIODIC 
EXTERNAL FIELD 

Thus far we have considered only constant electric fields. However, it 
is a straightforward procedure to incorporate dynamic fields in van Kam- 
pen's treatment. For a time-dependent electric field, Eq. (3.7) becomes 

c~(tp(K, t)> 
- [ -K2D + iKxE(t) kto 

~t 

-K fo drE(t) E(t--r)<CSl~(t)61~(t - * ) ) ]  (6(K,  t ) )  (5.1) 

Choose E ( t )=  E o exp(icoot) and take for the mobility correlation function 
the simple exponential (3.14); Eq. (5.1) is easily solved as 

< ~(K, t) > = exp [ - KZDt + KxEo#o(e ~~176 - 1 ) 

2 2 2i~oot _K2xE~(e~"_~ l ) ]  
2iCOo(iCOo+ b) J (5.2) 
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Note the explicit appearance of the external driving frequency in the "#0 
average" term as well as in the fluctuation term. At sufficiently low frequen- 
cies and for times that are not too long, we can assume 

02 o t ~ 1, 02o/b ~ 1 (5.3) 

and thereby recover the renormalized form 

6Dxx = E2(a/b)  (5.4) 

while at very high frequencies ( ~ )  reflects only isotropic diffusive behavior 
and decays as a simple exponential. The van Hove function is quite 
complex in a broad intermediate regime. 

Another interesting example is that of an external field with a random 
phase ~b: 

E ( t ) = - E ( t , O ) = E o s i n ( 0 2 o t + ~ ) ,  0.~<~b <~2~ (5.5) 

where ~b is uniformly distributed between 0 and 2m The phase average of 
E(t, ~b) now vanishes identically 

(E(t ,  ~b))o = 0 (5.6) 

while the phase-averaged two-time correlation function is given by 

7Eo ( E ( t )  E ( s ) ) ~ =  1 2 cos [02o( t - s ) ]  (5.7) 

If we assume that the phase and ensemble averages commute, then we can 
solve Eq. (5.1) for the phase-averaged ( ~ )  as 

((~(K, t)),) 

= exp - K  2 Dt  2 Jo d~ cos(02o~)(~#(0) b# ( r ) )  (5.8) 

which says that the nonrandom or average drift has been filtered out and 
the fluctuation term consists of the cosine Fourier transform of F(t) .  

R E F E R E N C E S  

1. B. R. Ware and W. H. Flygare, Chem. Phys. Lett. 12:81 (1971); J. Colloid Interface Sci. 
39:670 (1972). 

2. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), Chapter 6; 
D. A. MeQuarrie, Statistical Mechanics (Harper and Row, New York, 1976), Chapter 22. 

3. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 1976), 
Chapters 7 and 9. 



Electrophoretic Light Scattering 1261 

4. B. R. Ware, Adv. Colloid Interface Sci. 4:1 (1974). 
5. K. S. Schmitz, Chem. Phys. Lett. 63:259 (1979); J.M. Schurr and K.S. Schmitz, Annu. 

Rev. Phys. Chem. 37:27l (1986). 
6. J. B. Hubbard and J. A. McCammon, J. Chem. Phys. 87:4339 (1987). 
7. H. A. Abramson, Electrokinetic Phenomena (Little and Ives, New York, 1934); J. T. G. 

Overbeek and P.H. Wiersema, in Electrophoresis, M. Bier, ed. (Academic, New York, 
1967), Vol. lI. 

8. F. Booth, Proc. R. Soc. Lond. A 203:514 (1950). 
9. M. Teubner, J. Chem. Phys. 76:5564 (1982). 

10. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 
Amsterdam, 1981), Chapters IV and XIV. 

11. N. G. van Kampen, Physica 74:215, 239 (1974). 
12. R. C. Bourret, Can. J. Phys. 43:619 (1965); 44:2519 (1966); Phys, Lett. 12:323 (1964). 
13. F. J. Dyson, Phys. Rev. 75:486, 1736 (1949). 
14. G. E. Uhlenbeck and L. S. Ornstein, in Selected Papers on Noise and Stochastic Processes, 

N. Wax, ed. (Dover, New York, 1954), p. 93. 
15. Yi-Der Chen, Proc. Natl. Acad Sci. USA 72:3807 (1975). 
16. T. Hill, J. Chem. Phys. 54:34 (1971). 


